Uniaxial Freezing, Freeze-Drying, and Anodization for Aligned Pore Structure in Dye-Sensitized Solar Cells
نویسندگان
چکیده
A variety of methods are available for creating the titanium dioxide (TiO2) semiconductor surface layer of dye-sensitized solar cells (DSSCs); however, many of them are used independently to create surface morphologies that are influenced by only one process. A series of experimental techniques are utilized, some not originally used for thin film preparation, to create a semiconductor surface that exhibits variations in morphology on the macro-, micro-, and nanoscales. The techniques used to create the microand nanostructures are uniaxial freezing, freeze-drying, and anodization or etching, combined with the macrostructural techniques of the doctor blade method, screen printing, and/or electrophoretic deposition. When several of these techniques are used together to create, and modify, a thin film for DSSC, these techniques can produce a TiO2 semiconductor layer for DSSC that has very high current and voltage characteristics, and a surface morphology more complex than can be created by using any one of the techniques alone.
منابع مشابه
High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods
In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کاملNumerical Study on Parameters Affecting the Structure of Scaffolds Prepared by Freeze-Drying Method
Freeze-drying is one of the most used methods for preparing scaffolds and is very sensitive to the material and operational parameters such as nucleation temperature, thermal properties of the mold, cooling rate, set freezing point, and slurry height. In the present study, a Finite Element Method (FEM) based code was developed to investigate the effects of such parameters and to eventually ...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملThe Construction and Comparison of Dye-Sensitized Solar Cells with Blackberry and N719 Dyes
In a dye-sensitized solar cell (DSSC), the amount of light absorption dependson the design of the pigments, which determines the strength of light absorption and theoptical range of the cell. In this paper, we have constructed and studied two fairly similarpattern of DSSCs in structure. The thickness of TiO2 used for both cells is taken to be 2μm. We have used an industrial N719 dye for one of ...
متن کامل